Preparing for the next Ebola outbreak: in-country genomic capacity in Africa

The resurgence of Ebola virus disease (EVD) in Équateur province in the Democratic Republic of the Congo in May 2018, is an important reminder of the difficulties of predicting when and where the next outbreak will occur. The subsequent July 2018 outbreak of EVD in the Democratic Republic of the Congo has affected about 1000 people and the outbreak has the highest case fatality rate (62%) for EVD to date.\(^1\) Conflict, insecurity, poverty, mistrust, poor health systems, and other factors have been implicated in sustaining the outbreak. The response to the July 2018 EVD outbreak in North Kivu Province has highlighted the positive impact of lessons learnt during the 2013–16 EVD outbreak in west Africa. These lessons included real-time genomic analysis of viruses and the use of different countermeasures during the outbreak response;\(^2\) strong collaborations between countries of the northern hemisphere and southern hemisphere and between countries within the southern hemisphere and rooted investment for research capacity building to address disease outbreaks;\(^3\) and timely and committed responses from WHO and other health development agencies.\(^4\)

In the Lancet Infectious Diseases, Placide Mbala-Kingebeni and colleagues\(^2\) demonstrated how in-country genomics capacity has been integrated in the current EVD outbreak response in North Kivu Province of the Democratic Republic of the Congo. The authors report the use of genomics tools for assessment of medical countermeasures such as diagnostics and therapeutics deployed during the outbreak. Mbala-Kingebeni and colleagues used real-time genomic viral sequencing to demonstrate that the virus strain identified in the North Kivu and Ituri Provinces is different from the strain identified in the previous May 2018 EVD outbreak in Équateur Province. The authors used the Nextera Flex method for viral genome enrichment, developed by Illumina Technologies (San Diego, CA, USA), to shorten the time between blood sample collection and generation of whole viral genome sequences from 72 to 28 h. They also identified a small number of mismatches and mutations in targeted areas of some PCR tests available for field deployment; however, none of these mismatches affected the performance of the PCR tests.

The authors’ assessment of the binding capacity of the monoclonal antibodies Zmapp and mAb114—deployed as therapeutics during the previous outbreak—to the new strain of the Ebola virus identified in Ituri Province, showed that the changes in the newly identified Ituri strain did not affect their binding capacity. These findings were translated into actionable information and used by stakeholders for evidenced-based interventions in the outbreak response.

The approach used by these authors;\(^2\) confirms and reinforces the notion that proactive, real-time genomic viral sequencing and surveillance of human populations represents a simple and cost-effective method of mitigating outbreaks in countries and locations that are most at risk of infectious disease outbreaks. For example, researchers at the African Center of Excellence for Genomics of Infectious Diseases (Redeemer’s University, Ede, Nigeria) have used real-time next-generation sequencing technology to minimise public concerns regarding the surge in Lassa fever\(^5\) and yellow fever\(^6\) cases during the 2018 outbreaks in Nigeria, and successfully guided outbreak responses in the country.

To prepare for the next EVD outbreak, we advocate the establishment of national and regional hubs of excellence in infectious diseases genomics in regions with a high risk of outbreaks, where untargeted metagenomic sequencing analysis would be done. Thus, providing a potential one-step solution for outbreak pathogen detection of both known and novel pathogens would replace the need for multiple individual pathogen assays.\(^7\) Although the main advantage of metagenomic sequencing is that it does not require a priori knowledge of the pathogen, specialised laboratory equipment and highly complex bioinformatic tools are required, which are expensive. Rapid identification of viruses will only be achieved if novel genomic technologies and the people trained to use them are available in many of the resource-limited regions of Africa where the risk of outbreaks is high.

The establishment of the African Center of Excellence for Genomics of Infectious Diseases as a regional hub of genomics excellence for infectious diseases by the National Institutes of Health (H3 Africa Consortium)
and the World Bank (through the African Center of Excellence project) has demonstrated capabilities for in-country real-time surveillance and tracking of infectious agents during outbreaks.3,6,8

Previous reports2,5,6,9 from many parts of Africa indicate that long-term capacity building, continued technology transfer among partners, deep rooted investments1 in in-country real-time genomics surveillance, and the integration of such capacity into the established but siloed pathogen-specific diagnostic platforms in Africa are needed for quick response in outbreaks.

Additionally, improved trust and transparency through immediate public sharing of data, resources and samples if feasible, and strong partnerships with local communities, will help prevent the next major Ebola outbreak on the continent.

Anise N Happi, Chinedu A Ugwu, *Christian T Happi
Department of Veterinary Pathology, Faculty of Veterinary Medicine, University of Ibadan, Ibadan, Nigeria (ANH); and Department of Biological Sciences, College of Natural Sciences (CAU, CTH) and African Center of Excellence for Genomics of Infectious Diseases (CAU, CTH), Redeemer’s University, Ede 200012, Nigeria
happic@run.edu.ng

ANH and CAU contributed equally. We declare no competing interests. This work is supported by grants from the National Institute of Allergy and Infectious Diseases (National Institutes of Health H3 Africa; U01HG007480 and U54HG007480) and a grant from the World Bank (project ACE019). All authors are supported by the UK Biotechnology and Biological Sciences Research Council (BB/R020216/1). We thank the staff at the African Center of Excellence for Genomics of Infectious Diseases (Ede, Nigeria), the management of Redeemer’s University (Ede, Nigeria), and the Department of Veterinary Pathology, University of Ibadan (Ibadan, Nigeria) for their continuous support. We thank our colleagues at the Broad Institute (Cambridge, MA, USA), the Viral Haemorrhagic Fever Consortium, Tulane University (New Orleans, LA, USA), Zalgen Labs (Germantown, MD, USA), the Nigeria Center for Disease Control (Abuja, Nigeria), and the Irula Specialist Teaching Hospital (Irula, Nigeria).